The discrete fractional Fourier transform
نویسندگان
چکیده
We propose and consolidate a definition of the discrete fractional Fourier transform that generalizes the discrete Fourier transform (DFT) in the same sense that the continuous fractional Fourier transform generalizes the continuous ordinary Fourier transform. This definition is based on a particular set of eigenvectors of the DFT matrix, which constitutes the discrete counterpart of the set of Hermite–Gaussian functions. The definition is exactly unitary, index additive, and reduces to the DFT for unit order. The fact that this definition satisfies all the desirable properties expected of the discrete fractional Fourier transform supports our confidence that it will be accepted as the definitive definition of this transform.
منابع مشابه
Fractional Fourier series expansion for finite signals and dual extension to discrete-time fractional Fourier transform
Conventional Fourier analysis has many schemes for different types of signals. They are Fourier transform (FT), Fourier series (FS), discrete-time Fourier transform (DTFT), and discrete Fourier transform (DFT). The goal of this correspondence is to develop two absent schemes of fractional Fourier analysis methods. The proposed methods are fractional Fourier series (FRFS) and discrete-time fract...
متن کاملAn Efficient Hamiltonian for Discrete Fractional Fourier Transform
Fractional Fourier Transform, which is a generalization of the classical Fourier Transform, is a powerful tool for the analysis of transient signals. The discrete Fractional Fourier Transform Hamiltonians have been proposed in the past with varying degrees of correlation between their eigenvectors and Hermite Gaussian functions. In this paper, we propose a new Hamiltonian for the discrete Fract...
متن کاملThe discrete harmonic oscillator, Harper’s equation, and the discrete fractional Fourier transform
Certain solutions to Harper’s equation are discrete analogues of (and approximations to) the Hermite–Gaussian functions. They are the energy eigenfunctions of a discrete algebraic analogue of the harmonic oscillator, and they lead to a definition of a discrete fractional Fourier transform (FT). The discrete fractional FT is essentially the time-evolution operator of the discrete harmonic oscill...
متن کاملA discrete fractional random transform
We propose a discrete fractional random transform based on a generalization of the discrete fractional Fourier transform with an intrinsic randomness. Such discrete fractional random transform inheres excellent mathematical properties of the fractional Fourier transform along with some fantastic features of its own. As a primary application, the discrete fractional random transform has been use...
متن کاملTwo dimensional discrete fractional Fourier transform
Fractional Fourier transform (FRFT) performs a rotation of signals in the time—frequency plane, and it has many theories and applications in time-varying signal analysis. Because of the importance of fractional Fourier transform, the implementation of discrete fractional Fourier transform will be an important issue. Recently, a discrete fractional Fourier transform (DFRFT) with discrete Hermite...
متن کامل